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Abstract 

One of the critical parameters in wildfire behavior is the dead fuel moisture content (DFMC). 

DFMC is affected from environmental factors and the vegetation characteristics, thus it varies 

across the landscape. Previous research showed that remote sensing reflectance data can 

assist the spatial estimation of DFMC. The aim of this paper is to evaluate the Landsat 8 in 

retrieving the DFMC in a complex Mediterranean ecosystem. The Normalized Difference 

Vegetation Index (NDVI) and the top of atmosphere brightness temperature are correlated 

with the 10-h fuel moisture content and the surface temperature recorded from Remote 

Automatic Weather Stations (RAWS). Training data are collected from the year 2015 and the 

validation is applied to year 2016. According to the literature, the DFMC was correlated with 

the ratio of NDVI/LST, however, our results were not satisfactory producing low r2 

coefficients. New models were developed based on the DFMC and the brightness 

temperature (BT) which resulted to r2 values up to 0.733. The validation with new data 

confirmed that the top of atmosphere brightness temperature retrieved from Landsat 8, can be 

used as an input to estimate the spatial distribution of DFMC. The process was fully 

automated, i.e. from data ordering to map preparation, and is ready to continually provide the 

wildfire managers and firefighting personnel confronting wildfires with the DFMC maps.  

Keywords: 10-hour dead fuel moisture content, forest fires, remote sensing, brightness temperature 

(BT), Landsat 
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1. INTRODUCTION  

The significant influence of the fuel moisture content (FMC) in wildfires, has been 

recognized by wildfire managers and scientists (Pollet and Brown, 2007). Fire behavior has 

great sensitivity to water content which is a key parameter in risk assessment (Vejmelka et 

al., 2016). Since forest fires affect a large variety of vegetation and ecosystems, scientists 

began to develop various fire danger rating models and the FMC is one of the parameters that 

is taken into consideration. Various physical and environmental factors influence moisture 

content and many authors managed to identify the major conditions that influence the water 

content (Dimitrakopoulos and Papaioannou, 2001; Verbesselt et al., 2006; Danson and 

Bowyer, 2004; Chuvieco et al., 2002; Aguado et al., 2007). Dimitrakopoulos and 

Papaioannou (2001) stated that water content is related in inversion to the probability of 

inflammation, because part of the heat required to begin a fire is used from the evaporation 

process. Additionally, slow fire spread appears on vegetation with high moisture content 

since the source of the flames is reduced when there are wet materials (Aguado et al., 2007) 

and because part of the heat released by the fire front is used to absorb water from fuels 

nearby (Chuvieco et al., 2002). 

There are many methods for estimating FMC (Pinto et al., 2014). However, the most 

common technique comes from the equation (1) which describes the ratio of weight of the 

water in the sample or material to the dry weight of the sample (Countryman and Dean, 

1979): 

 

 (1) 

                                                                         

where,  is fresh weight and  is the dry weight but generally it is expressed as the 

percentage of leaf dry weight (Chuvieco et al., 2004a; Danson and Bowyer, 2004). The above 

equation requires field samples and their weight is determined in the laboratory. In wildfire 

behavior, it is critical to know both the live and dead fuel moisture content (DFMC) (Danson 

and Bowyer, 2004). The DFMC can be found in branches that are categorized according to 

their size, in leaves and pine needles lying on the ground and in any dead vegetation. At each 

interval (1, 10, 100, 1000 hrs) fuel loses 63% moisture of the difference between the initial 

moisture content and the equilibrium moisture content (Pollet and Brown, 2007). Other 

estimation methods of DFMC are by using meteorological indices (Aguado et al., 2007), and 

the inversion of the radiative transfer equation (Riaño et al., 2005). Although field sampling 

and measurements are expensive and consume time, they are accurate at local level 

(Chuvieco et al., 2004a; Sow et al., 2013). Additionally, retrieving the spatial distribution 

based on these point measurements is not feasible (Yebra et al., 2013). Remote Automatic 

Weather Stations (RAWS) are used for retrieving 10-h fuel moisture by pine dowel that 

emulates the moisture content of similarly sized twigs on the forest floor.  Unlike DFMC, the 

estimation of live fuel moisture content is more difficult (Viegas et al., 2001) although dead 

fuels are more dangerous because they are drier than live and respond faster on rapid changes 

of the atmosphere (Chuvieco et al., 2004b).  

The drawbacks described previously, can be overcome by using satellite remotely sensed 

data (Chuvieco et al., 2004a). The increasing technology of observation instruments can 

provide significant estimations not only for moisture and fire monitoring but for other 

environmental conditions (Gerdzheva, 2014). By using satellites, researchers can estimate 

directly vegetation status, in which water stress, affects vegetation electromagnetic behavior, 

because images cover the whole area of interest (Prosper-Laget et al., 1995). Although 

remote sensing is considered an advantage on DFMC estimation, satellites on the other hand 
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have their own characteristics. For example, as Verbesselt et al., (2006) stated, satellites like 

Landsat, with high spatial resolution, provide precise information of vegetation like fuel types 

but have low temporal resolution unlike satellites like NOAA-AVHRR or MODIS which 

revisit period is shorter than the one of Landsat. That means there could be a regular update 

of information about vegetation water stress, considering that water content temporal 

frequency can vary significantly (Sow et al., 2013). In general, remote sensing of vegetation 

monitoring can provide an alternative instant way for detecting water condition.  

Most researchers are based on both the optical and thermal part of the electromagnetic 

spectrum, using the reflectance properties of vegetation. Sow et al. (2013) have shown that 

many authors use the combined information of different wavelengths. However, the most 

important element with plant reflectance is that remote sensing is able to discriminate the 

affection of water content from factors like other vegetation characteristics and soil below 

plants (Yebra et al., 2013). Many studies have shown that SWIR (short-wave infrared) is the 

most sensitive channel to water absorption (Chuvieco, 2009). However, for vegetation 

analysis the best approach is the usage of vegetation indices (Sow et al., 2013) and the most 

common of them is NDVI when analyzing it at multi-temporal series (Alonso et al., 1996). 

NDVI was proposed for the first time from Rouse et al. (1973) and is described by the 

following equation:  

 

 (2) 

 

where NIR and RED are the reflectances of near infrared and visible red, respectively. It is 

assumed that NDVI is sensitive to water content changes, since it estimates chlorophyll 

activity and vegetation vigor (Chuvieco et al., 2004a). For example, Ceccato et al. (2001) 

assumed that NDVI and FMC may be related because of the strong correlation between leaf 

chlorophyll content and leaf moisture content (Pettorelli, 2013). However, many researchers 

disagree about the direct measurement of vegetation water content from NDVI. Although 

they use vegetation indices as a proxy for indirect water stress detection, the connection 

between FMC and chlorophyll is not direct since it depends on plant species and their 

phenological status, atmospheric pollution, nutrient deficiency, toxicity, plant disease and 

radiation stress (Ceccato et al., 2001; Dasgupta et al., 2005). Usually, this approach to 

retrieve FMC though NDVI, is done when estimating live FMC but when measuring DFMC 

through remote sensing it is difficult because dead fuels do not have variations in chlorophyll 

of leaves and weather affects water alternations (Verbesselt et al., 2006). On the other hand, 

plant drying causes a decrease in leaf area index (LAI) and chlorophyll content, so FMC 

could be indirectly measured as the result of the effects from this procedure. Conclusively, 

positive linear correlations reported using real FMC data and satellite derived NDVI (Jones 

and Reinke, 2009).  

Similar approaches were made from Gao (1996), who used NIR and SWIR bands to 

propose NDWI (Normalized Difference Water Index). The basic concept about using NIR is 

that plants have high reflectance in this part of the spectrum (Jones and Reinke, 2009) and 

indices using NIR and SWIR estimate water content directly, since they comprehend 

wavelengths that are related more to water absorption channels. Several other studies (Alonso 

et al., 1996; Dasgupta et al., 2005; Hong and Lakshmi, 2007; Prosper-Laget et al., 1995; Sow 

et al., 2013) extended the use of different indices analyzing the combination of NDVI and 

LST making temperature measurements significant on vegetation water stress detection. As 

Sow et al. (2013) stated, “the primary basis for this relationship should be found in the unique  
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spectral reflectance-emittance properties of plant leaves in the red and infrared wavelengths 

combined with the low thermal mass of plant leaves relative to soil”. Also, soil moisture and 

thus NDVI reduction is due to the increase of evapotranspiration caused from temperature 

rise (Sun and Kafatos, 2007). In addition, there is a negative correlation between NDVI and 

LST. Water stress can rise rapidly the surface temperature (Wan et al., 2004). A connection 

between drying of plants and rise of the temperature has also been reported from 

measurements of the thermal spectrum, caused by evapotranspiration variations. LST is an 

important parameter in understanding the physics of the earth's surface process (Li et al., 

2013) to model accurately the surface energy budget (Prata et al., 1995) and to understand the 

environmental phenomena such as  forest fire danger and vegetation status (Hazaymeh et al., 

2015).  

Finally, a number of studies based on the relation between FMC real data and satellite 

indices have been proposed to estimate water content and showed good correlations, 

especially FMC with NDVI and LST. On the other hand, good results achieved from the 

combination of real FMC data and satellite derived indices may be plant species dependent 

(Chuvieco, 2009). For example, Chuvieco et al. (2004a), used a regression model combining 

FMC with NDVI and LST , to evaluate the connection between real ground FMC and 

satellite data at Canaberos Park in Spain. They found positive correlation and, as they stated, 

plant drying reduces chlorophyll activity.    

The aim of this research is to examine the correlation between DFMC and the NDVI, the 

BT and the LST by using data retrieved from Landsat 8 and RAWS. DFMC and LST data are 

provided by RAWS of Lesvos Island while NDVI and BT are retrieved by the Landsat 8 

image processing. General linear regression models were developed based on 2015 data and 

the model that provided the best statistics was validated with 2016 data producing a series of 

DFMC maps. The whole process was automated by developing a software that automatically 

downloads the satellite images from the USGS repository and creates the FMC maps in a 

transparent way to the end user.. FMC maps are available for browsing and downloading 

through an appropriate Web-GIS interface. 

2. DATA AND METHODOLOGY  

2.1 Study area 

The island of Lesvos is located at the northeastern Aegean Sea of Greece and covers an area 

of 1636 km2 with a variety of geological formations, climatic conditions and vegetation types 

(Figure 1). The terrain is rather hilly and rough, with its highest peak at 960 m. The soils of 

Lesvos are widely cultivated, mainly with rain-fed crops such as olive trees on the central, 

south and east parts of the island. These lands face frequent and low-intensity fire events due 

to their cultivation and land-cleaning practices. The vegetation of Lesvos Island, defined on 

the basis of the dominant species, includes phrygana or garrigue-type shrubs in grasslands; 

evergreen-sclerophylous or maquis-type shrubs; pine forests; deciduous oaks; olive tree 

groves; and other agricultural lands. The climate is typical Mediterranean, with warm and dry 

summers and mild and moderately rainy winters. The average annual air temperature is 180 C 

with high oscillations between maximum and minimum daily temperatures. Figure 2 shows 

the variation of the average monthly10-h Fuel Moisture Content during 2015. The vegetation 

water stress is high between April and September, while in July and August the 10-h fuel 

moisture is approximately 6%. 
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Figure 1: The study area of Lesvos Island, Greece. 

 

 
Figure 2: Annual variation of average monthly 10-h Fuel Moisture Content. 

2.2 Data 

Landsat 8 images (path:181, row:33) from the fire prevention periods of 2015 (1 May to 31 

October 2015) and 2016  were used for this study. Landsat 8 is equipped with two sensors: 

OLI (Operational Land Imager) and TIRS (Thermal InfraRed Sensor). OLI collects data on 

nine multispectral bands (including the new Coastal/Aerosol and Cirrus) with a spatial 

resolution of 30 m. (with panchromatic band at 15 m) and TIRS with two thermal infrared 

bands. Landsat images were acquired from USGS as ready Landsat Surface Reflectance High  

Level Data Products i.e. the NDVI was based on the surface reflectance and the brightness 

temperature (at top of atmosphere) (Masek et al, 2006, Vermote et. al. 2016). Moreover, the 
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cloud mask product was used for masking anything else but clear land. The data of the 2015 

period was used for the training stage while the data of 2016 for the validation. 

Meteorological data, used for this study, are provided by the Remote Automatic Weather 

Stations network installed and maintained by University of the Aegean, Greece 

(http://meteo.aegean.gr/). Out of the seven installed RAWS in Lesvos Island, only four of 

them provide 10-h FMC and three of them the land surface temperature (Figure 1). Therefore, 

from the satellite images the NDVI, BT1 (TIRS channel 1) and BT2 (TIRS channel 2) values 

were extracted from the 4 pixels of the RAWS, and for the same days and hour of image 

acquisitions the 10-h FMC and the LST values from the RAWS archive. 

2.3 Methodology 

To  estimate the DFMC from the satellite images, simple linear regression models were 

developed based on previous research. The response variable was the DFMC and the 

explanatory variable were the NDVI, BT and LST. Based on the approach proposed by 

Chuvieco et al. (2004a), one of the correlations that were examined was the fuel moisture 

content with NDVI-LST. As mentioned before, NDVI and LST have greater influence on 

FMC when used together than separately usually by using their ratio (Eq. 3) 

 

  (3) 

 

However, instead of retrieving LST by the atmospheric correction of the Landsat thermal 

bands, the specific variable was replaced with the equation resulting from the correlation 

between LST and BT. Therefore, the equation 3 becomes: 

 

 (4) 

 

Both of the thermal bands were tested in the correlation with the LST readings from 

RAWS. Except from the equation 4, more regression models were tested to correlate the 

DFMC with NDVI, LST and BT: 

 

 (5) 

 (6) 

 (7) 

  (8) 

 

The purpose of the variable correlation is to find if the results of the regression are 

statistically significant. Equations 7 and 8 were tested only after the previous correlations did 

not resulted as expected and they were rejected. Before applying the regression between the 

variables, it was decided to check the data to find if there are deviations and outliers. In the 

graphs created for this purpose, it was found that July was the only month with deviation 

between the variables and was considered that it will not affect the correlations. 

After the regression modelling, the most significant results were chosen and the final 

equation for the DFMC estimation was applied and validated. The aim was to validate the 

results with data that were not taken into consideration during the training phase and to 

produce the cartographic products that can be used by wildfire managers. For this reason 9 

new Landsat 8 images were downloaded from May to October 2016. The DFMC values of 

the pixels corresponding to the RAWS locations were extracted. The estimated DFMC values 

http://meteo.aegean.gr/
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and the actual 10-h Fuel Moisture Content readings were compared in order to compute the 

Root Mean Square error and to create a residual plot. 

The DFMC maps are automatically generated in a transparent way to the end user by a 

software component based on the API of the ESPA Ordering System. The API provides the 

necessary functionality to programmatically determine available Landsat data distributed by 

the U.S. Geological Survey (USGS), place new orders and download the data when the order 

has been completed. The software component is running as a process that utilizes curl scripts 

triggered by a time scheduler at the time when new products from the USGS repository are 

available. When a new order has been placed, its status is continuously checked until the 

order completion.  

Upon completion of the order, the order products are automatically downloaded and 

extracted. Then, a python script reads the mask file (cfmask.tiff) and the BT1 files from the 

downloaded order products and generates the DFMC geotiff files. Creation of DFMC maps 

includes: i) masking the water, cloud, cloud shadow and snow to NADATA, based on the 

CFMASK layer; ii) convert Kelvin to Celsius values; iii) calculation of DFMC; iv) project 

from WGS84 to GGRS87; and v) clip the study area. The DFMC maps are then automatically 

uploaded in the Web-GIS interface. The Web-GIS interface provides access to the available 

FMC files where end users can view or download. Figure 3 demonstrates the information 

flow for the creation of the FMC files. 

 
Figure 3: Process flow chart for the automatic DFMC preparation. 
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3. RESULTS AND DISCUSSION 

3.1 Linear regression modelling 

Two linear regression models were applied for the correlation between LST and BT1,BT2. 

The coefficient of determination  was found sufficiently low, i.e.  = 0.248 for BT1 and 

 = 0.181 for BT2 (Figure 4a and 4b). This low estimation is due to the factors affecting 

brightness temperature that is different than actual surface temperature and is described 

below. The relationship between FMC and LST also resulted in a low value of  = 0.3, 

although the linear relationship was negative confirming the hypothesis in the introduction 

(Figure 4c). The reason for this negative relationship is due to high temperatures that equal to 

increase of water loss (Chuvieco et al. 2004a). Extremely low results were found in the 

correlation between DFMC and NDVI (Figure 4d). Specifically, the coefficient of 

determination was very low (  0.01) without any statistical significance (P > 0.05). These 

results were expected, since according to Chuvieco et al. (2004a), the vegetation index does 

not measure the variations of moisture content directly but it estimates its effects on 

chlorophyll that may not be necessarily related. However, besides the very low results, it is 

worth noting that the correlation was found negative. This negative relationship between 

FMC and NDVI does not correspond to the assumptions made by many authors. 

Since the initial correlation did not have the expected results, it was decided to test if the 

10-f fuel moisture content is correlated with the top of atmosphere brightness temperature of 

Landsat 8 thermal bands. In this case, the results were much more satisfactory considering the 

assumptions made in the introduction of the study. In these models, the  Mytilene RAWS was 

also included since the lack of LST values does not influence the regression. In this 

correlation both of the brightness temperature bands were tested. The correlation between 

DFMC and BT1 resulted to an  = 0.733, while the usage of BT2 as an independent variable 

resulted to an  = 0.65. Scatterplots of these regressions are shown on Figure 5. Statistical 

significance was found in both models (P <0.05) with negative relationship confirming that 

higher temperatures reduce the moisture content. Taking into account these results it seems 

that top of atmosphere brightness temperature measured from satellite sensors has statistically 

significant results when correlated with real 10-h FMC measurements from RAWS. To 

explain the relationship of brightness temperature with fuel moisture content, and especially 

with DFMC, the details of retrieving the LST from brightness temperature should be 

explored. Many researchers have developed different ways for the retrieval of LST through 

the years by using satellite sensors. Yu et al. (2014) described further these methods for the 

TIR bands of Landsat 8. As mentioned before, sensors measure radiances reaching the 

satellite level and BT can be derived, so LST estimation algorithms can use brightness 

temperature as input (Dash et al., 2002). 

In general, BT is atmospheric dependent, measured at satellite level and is lower than the 

actual LST. Usually, the difference between BT and LST in the 10-12 μm region is 1 to 5 K 

(Prata et al., 1995). Therefore, if the atmospheric effect and the surface spectral emissivity is 

taken into account, observed brightness temperature can provide LST with various algorithms 

(Dash et al., 2002). The importance of the atmospheric effects is noted also by many authors 

(Cristobal et al., 2009; Chrysoulakis and Cartalis, 2010; Ignatov and Dergileva, 1994) 

mentioning that deriving LST using BT is feasible under cloud free data. However, the 

derivation of LST with these known parameters is not enough because complex procedures 

are used to determine actual earth temperature.  
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Figure 4: Scatterplots of (a) LST/BT1, (b) LST/BT2, (c) FMC/LST and (d) FMC/NDVI. 

 

Figure 5: Scatterplots of (a) FMC/BT1 and (b) FMC/BT2 with the lower and upper confidence limits (95%) 
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These assumptions can confirm the relationship of DFMC and brightness temperature as 

both of them are affected from atmospheric conditions. Nevertheless, because none of the 

regressions models initially assumed in the methodology were effective except those 

combining DFMC and BT, it was decided to keep the one with the most significant results. 

Therefore, the final equation to estimate the DFMC from Landsat 8 satellite data is the 

following:  

 

  (9) 

3.2 Validation of the results 

To validate the results, nine Landsat 8 images of the 2016 wildfire period were used. For the 

same days and hours of acquisition, the actual values of DFMC from RAWS were retrieved 

and compared with the estimated values of DFMC, computed based on top of atmosphere 

BT1 band of Landsat images by using the equation 9. The scatterplot of the residuals versus 

predicted DFMC values is symmetrically distributed, tending to cluster towards the middle of 

the plot and around the zero value of y-axis, while it does not present clear patterns (Figure 

6a). Also, from the histogram of residuals (Figure 6b) it seems that the variance is almost 

normally distributed. The calculated root mean square (RMS) error was 1.477 according to 

the equation: 

 

  (10) 

 

where, n is the number of observations,  are the predicted DFMC values from Landsat and y 

are the DFMC values from RAWS. 

 
Figure 6: (a) Scatterplot of residuals versus predicted DFMC and (b) residuals histogram for the validation 

period of 2016. 

  

Regarding the automated procedure for the DFMC creation, each new order requires 

approximately 2 hours for completion. To enable the sharing of information easily and 

promptly, the output files are accessible through a web-based front end that, eliminates the 

need to install special desktop software. This enables any authorized user to immediately 

access the platform from anywhere in the world. Users have the ability, without the 

requirement of knowing the handling of commercial and complicated GIS applications, to 

view the latest created DFMC files or view older DFMC files which are stored in the DFMC 

archive. Output files are also available for download to perform any meta-analysis. In this 
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context, a set of maps was prepared to validate the spatial and the temporal distribution of the 

DFMC in the study area (Figures 7-10).  

                                                         

 
Figure 7: 10-h fuel moisture content estimation of Lesvos Island based on Landsat 8 top of atmosphere 

brightness temperature for 10-05-2016. 

 

 
Figure 8: 10-h fuel moisture content estimation of Lesvos Island based on Landsat 8 top of atmosphere 

brightness temperature for 13-07-2016 
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Figure 9: 10-h fuel moisture content estimation of Lesvos Island based on Landsat 8 top of atmosphere 

brightness temperature for 15-09-2016 

 

 
Figure 10: 10-h fuel moisture content estimation of Lesvos Island based on Landsat 8 top of atmosphere 

brightness temperature for 01-10-2016 
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4. CONCLUSIONS 

In this paper, remote sensing techniques where applied to explore any linear relationships 

between 10-hour fuel moisture content and satellite multispectral data. Although many 

studies have shown that there is a significantly linear correlation between FMC and NDVI - 

LST ratio, results  of the specific regression  were not as expected in our study. Other  studies  

 

were conducted by using more data in a wider spatial extent and for different vegetation types 

and various satellite indices and sensors. However, in our study it was found that there is a 

good linear correlation between real data of 10-hour DFMC and the top of atmosphere 

brightness temperature computed from multispectral image processing. Also, the validation 

results for year 2016 by using data that were not considered within the regression modelling 

were quite noteworthy. Therefore, we can conclude that an accepted spatial estimation of the 

DFMC can be computed based on the brightness temperature of Landsat 8 without any 

atmospheric correction. Also, the temporal variation is significant as it depicts the DFMC 

variations within a wildfire period. 

Further analysis can include data from a wider period and by testing other indices, i.e. 

Normalized Difference Water Index (NDWI) and the Normalized Difference Infrared Index 

(NDII) which is a widely-used index to remotely sense Equivalent Water Thickness (EWT) 

of leaves and canopies. Nonlinear curve estimations also could be tested. It is clear the 

importance of using both ground and satellite measurements for estimating and predicting fire 

behavior because wildfires are connected directly to vegetation moisture content. 

Specifically, DFMC has proved to be more important in such studies, due to lack of moisture 

compared to live FMC (Chuvieco et al., 2004b). Besides Landsat 8, new sensors with higher 

temporal, spectral and spatial resolution i.e. (Sentinel 2) can be explored to retrieve indices 

that will be more sensitive to the water content. 
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